Convergence of sequences

(The following problem is borrowed from page 599 of Calculus (8th ed.) by Larson, Hostetler, and Edwards.)

Problem:

Find a definition for the sequence $\left\{a_{n}\right\}$ whose first five terms are

$$
-\frac{2}{1}, \frac{8}{2},-\frac{26}{6}, \frac{80}{24},-\frac{242}{120}, \ldots
$$

and determine whether it converges or diverges.

Solution:

By inspection,

$$
a_{n}=(-1)^{n} \frac{3^{n}-1}{n!}
$$

A theorem states that if the absolute ratio of successive terms is less than 1 for large n, then the sequence will converge to 0 , i.e.

$$
\text { if } \lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right| 1 \text {, then } \quad \lim _{n \rightarrow \infty} a_{n}=0
$$

(Note that this is similar to, but different from, the ratio test for convergence of series.)
In our example,

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} \frac{3^{n+1}-1}{(n+1)!}}{(-1)^{n} \frac{3^{n}-1}{n!}}\right|
$$

We can simply ignore the $(-1)^{n}$ factors, because we are only interested in the ratio of the absolute values. Simplifying, we have

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty} \frac{n!}{(n+1)!} \frac{3^{n+1}-1}{3^{n}-1}=\lim _{n \rightarrow \infty} \frac{1}{n+1} \frac{3^{n+1}-1}{3^{n}-1}
$$

As $n \rightarrow \infty$, the first fraction in this limit goes to 0 , while the second goes to 3 . Since the limit of a product is the same as the product of the limits, the overall limit is 0 , and by the theorem stated above, the sequence converges to 0 , i.e.
$\lim _{n \rightarrow \infty} a_{n}=0$

